top of page

Quantitative Techniques Online Course

Ace your cpa quantitative techniques exam with lecture videos, notes, slides, and tests covering the entire syllabus. Study at your own pace or join a tutor support program.

Learning Outcomes

 

On completion of this course, the learner should be able to:

  1. Demonstrate an understanding of statistical methods used in decision-making.

  2. Demonstrate an understanding and application of statistical and mathematical models for estimation and forecasting.

  3. Demonstrate an understanding and application of techniques used in solving optimization problems in management.

 

Course Overview (Video)

Course Curriculum

 

Unit 1 - Data Collection

Unit 2 - Sampling

Unit 3 - Data Classification

Unit 4 - Measures of Location

Unit 5 - Measures of Dispersion

Unit 6 - Measures of Skewness

Unit 7 - Regression Analysis

Unit 8 - Correlation Analysis

Unit 9 - Index Numbers

Unit 10 - Network Analysis

Unit 11 - Decision Theory

Unit 12 - Forecasting

Unit 13 - Linear Programming

Unit 14 - Probability

Unit 15 - Discrete Distributions

Unit 16 - Binomial Distributions

Unit 17 - Poisson Distribution

Unit 18 - Normal Distributions

Unit 19 - Statistical Inference

Unit 20 - Estimation Theory

Unit 21 - Hypothesis Testing

Unit 22 - Non-Parametric Tests

Unit 23 - Linear Algebra & Calculus

Unit 24 - Statistical Quality Control

 

  • Unit 1 - Data Collection
    • Lecture 1 - Data Collection Techniques

     
    Unit 2 - Sampling
    • Lecture 1 - Sampling Techniques

     
    Unit 3 - Classification And Presentation of Data
    • Lecture 1 - Classification of Data

    • Lecture 2 - Frequency Distribution Table

    • Lecture 3 - The Histogram

    • Lecture 4 - The Lorenz Curve

    • Lecture 5 - Constructing the Lorenz curve

    • Lecture 6 - Lorenz curve for ungrouped data

  • Unit 4 - Measures of Location
    • Lecture 1 - The Mode

    • Lecture 2 - The Median

    • Lecture 3 - The Mean

     
    Unit 5 - Measures of Dispersion
    • Lecture 1 - Measures of Dispersion Explained

     
    Unit 6 - Measures of Skewness
    • Lecture 1 - Measures of Skewness Explained

     
    Unit 7 - Regression Analysis
    • Lecture 1 - Regression Analysis Explained

    • Lecture 2 - Least-Squares Regression Y on X

    • Lecture 3 - Least Squares Regression X on Y

     
    Unit 8 - Correlation Analysis
    • Lecture 1 - Correlation Analysis Explained

    • Lecture 2 - Product moment Correlation Coefficient

     
    Unit 9 - Index Numbers
    • Lecture 1 - Introduction to Index Numbers

    • Lecture 2 - Laspeyres and Paasche Index

     
    Unit 10 - Network Analysis
    • Lecture 1 - Introduction to Network Analysis

    • Lecture 2 - Drawing the Activity Network

    • Lecture 3 - Identifying the CRITICAL PATH

    • Lecture 4 - Identifying CRITICAL ACTIVITIES

     
    Unit 11 - Decision Theory
    • Lecture 1 - Decision Theory Explained

    • Lecture 2 - Expected Monetary Value Approach

     
    Unit 12 - Forecasting & Time-Series Analysis
    • Lecture 1 - The Forecasting Techniques

    • Lecture 2 - The Moving Average Method

    • Lecture 3 - The Z-chart

    • Lecture 4 - Least-squares Method

    • Lecture 5 - Exponential Smoothening Method

     
    Unit 13(1) - Linear Programming - Graphical Method
    • Lecture 1 - Linear Programming Procedures

    • Lecture 2 - Formulating the LP Model

    • Lecture 3 - Obtaining Coordinates for Plotting

    • Lecture 4 - Graphing the LP Model

     
    Unit 13(2) - Linear Programming - Simplex Method
    • Lecture 1 - Simplex Method Explained

    • Lecture 2 - Formulating the LP Model

    • Lecture 3 - The Initial Tableau

    • Lecture 4 - The Pivot Number

    • Lecture 5 - Row Operations

    • Lecture 6 - Final Tableau & Interpretation

     
    Unit 14 - Probability
    • Lecture 1- Probability Explained

     
    Unit 15 - Discrete Distributors
    • Lecture 1 - The Probability of a Discrete

    • Lecture 2 - The Mean of a Discrete

    • Lecture 3 - The Variance of a Discrete

    • Lecture 4 - The Standard Deviation

     
    Unit 16 - Binormal Distributors
    • Lecture 1 - Mean and Variance of Binomial

    • Lecture 2 - Probability of a Binomial

    • Lecture 3 - Binomial Approximation to Normal

     
    Unit 17 - Poisson Distributors
     
    Unit 18 - Normal Distributors
    • Lecture 1- Normal Distributions Explained

     
    Unit 19 - Statistical Inference
    • Lecture 1- Statistical Inference Explained

     
    Unit 20 - Estimation Theory
    • Lecture 1- Estimation Theory Explained

     
    Unit 21(1) - Hypothesis Testing (Large Samples)
    • Lecture 1 - Steps in a Hypothesis Test

    • Lecture 2 - Testing Large Samples (Z-tests)

    • Lecture 3 - Types of Hypothesis Tests

    • Lecture 4 - One Sided Test of Significance

     
    Unit 22 - Non-Parametric Tests
    • Lecture 1 - Steps in Chi-Square Tests

    • Lecture 2 - Testing Large Samples (Z-tests)

    • Lecture 3 - Types of Hypothesis Tests

    • Lecture 4 - One Sided Test of Significance

     
    Unit 23 - Linear Algebra & Calculus
    • Lecture 1 - Rules of Finding Derivatives

    • Lecture 2 - Application of Differentiation

    • Lecture 3 - Point of Profit Maximization

    • Lecture 4 - Turning Points Explained

    • Lecture